skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Donnelly, Alison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many plants are responding to increases in spring temperatures by advancing their leaf‐out and flowering times in temperate regions around the world. The magnitudes of species' sensitivities to temperature vary widely, and patterns within that variation can illuminate underlying phenological drivers related to species' life histories and local‐scale adaptations.The USA National Phenology Network (USA‐NPN) and the National Ecological Observatory Network (NEON) are two rapidly growing, taxonomically and geographically extensive phenology data resources in the USA that offer opportunities to explore emergent properties of spring phenology. Using observations of leaf‐out and flowering in temperate deciduous plant species from USA‐NPN (2009–2024) and NEON (2014–2022), we estimated species‐level flowering (n = 164) and leaf‐out (n = 136) sensitivities to temperatures of the preceding months, obtained through PRISM. We used the results to assess differences in sensitivities between the two datasets and among life history traits (e.g. introduced or native status, seasonal timing and growth habit) and to explore latitudinal patterns in sensitivity among and within species. We found significant relationships between temperature and leaf‐out phenology (2009–2024 for 109 (80%) species, ranging from −7.4 to −1.3 days/°C, and between temperature and flowering phenology for 140 (85%) species, ranging from −8.0 to −1.1 days/°C. Plant sensitivities were highly consistent among the USA‐NPN and NEON datasets, suggesting these datasets can be reasonably combined to expand the coverage of publicly available phenological data across the USA. Introduced species showed stronger sensitivity to temperature than native species for both leaf‐out (−0.8 days/°C difference) and flowering (−0.7 days/°C difference). The strongest (i.e. most negative) leaf‐out sensitivities to temperature were associated with earlier leaf‐out dates and strong flowering sensitivities. Latitudinal analyses within and across species indicate that flowering and leaf‐out sensitivities are both stronger at lower latitudes. Synthesis. Phenological ‘big data’ encompassing over 100 species across the eastern USA shows that leaf‐out and flowering occur earlier with warmer temperatures and that native species and individuals at high latitudes tend to have weaker temperature sensitivities than introduced species and more southern plants; these findings suggest adaptations within and across species to avoid leafing out and flowering under harsh environmental conditions. 
    more » « less
    Free, publicly-accessible full text available September 30, 2026
  2. Phenological indices are an effective approach for assessing spatial and temporal patterns and variability in plant development. The Spring Indices (SI-x), two widely adopted phenological indices, have been used in recent decades to predict development of woody plants, and document changes in spring growth timing, especially in North America. However, these two indices (Leaf and Bloom) capture only two “moments” in the continuum of spring when quantities of thermal or photo/thermal energy, associated with seasonal events in plants, are accumulated, limiting their utility to characterize the remainder of the spring season. Further, the Spring Indices do not account for intraspecific variation, limiting their ability to reflect non-cloned plant development. To address these shortcomings, we developed a novel suite of phenological indices that encompass a broader span of the spring season. These indices were constructed using observations contributed to the USA National Phenology Network’s Nature’s Notebook platform across many non-cloned tree and shrub species’ ranges, thereby incorporating differing regional responses within species due to genetic variations. Individual species model predictions of leaf or bloom timing exhibited an average mean absolute error of 8.55 days; most were improved by the inclusion of site-specific latitude, elevation, or 30-year average temperature. Leaf and bloom model outputs for individual species across the spring season were temporally aggregated into four leaf and bloom groups to produce a suite of Spring Development Indices (SDI). Accuracy of the SDI predictionswas 0.89 days lower, on average, than the species models, but 2.65 days better than SI-x. Generally, all SDIs were highly correlated. The SDIs exhibiting the most difference from the others were Early leaf, Very Early bloom, and Late bloom. As such, these SDIs provide novel insights, beyond SI-x, into the relative timing of spring-season “moments” across species in space and time. 
    more » « less
    Free, publicly-accessible full text available January 15, 2026
  3. Abstract The decision to establish a network of researchers centers on identifying shared research goals. Ecologically specific regions, such as the USA’s National Ecological Observatory Network’s (NEON’s) eco-climatic domains, are ideal locations by which to assemble researchers with a diverse range of expertise but focused on the same set of ecological challenges. The recently established Great Lakes User Group (GLUG) is NEON’s first domain specific ensemble of researchers, whose goal is to address scientific and technical issues specific to the Great Lakes Domain 5 (D05) by using NEON data to enable advancement of ecosystem science. Here, we report on GLUG’s kick off workshop, which comprised lightning talks, keynote presentations, breakout brainstorming sessions and field site visits. Together, these activities created an environment to foster and strengthen GLUG and NEON user engagement. The tangible outcomes of the workshop exceeded initial expectations and include plans for (i) two journal articles (in addition to this one), (ii) two potential funding proposals, (iii) an assignable assets request and (iv) development of classroom activities using NEON datasets. The success of this 2.5-day event was due to a combination of factors, including establishment of clear objectives, adopting engaging activities and providing opportunities for active participation and inclusive collaboration with diverse participants. Given the success of this approach we encourage others, wanting to organize similar groups of researchers, to adopt the workshop framework presented here which will strengthen existing collaborations and foster new ones, together with raising greater awareness and promotion of use of NEON datasets. Establishing domain specific user groups will help bridge the scale gap between site level data collection and addressing regional and larger ecological challenges. 
    more » « less
  4. Abstract Plant phenology regulates the carbon cycle and land‐atmosphere coupling. Currently, climate models often disagree with observations on the seasonal cycle of vegetation growth, partially due to how spring onset is measured and simulated. Here we use both thermal and leaf area index (LAI) based indicators to characterize spring onset in CMIP6 models. Although the historical timing varies considerably across models, most agree that spring has advanced in recent decades and will continue to arrive earlier with future warming. Across the Northern Hemisphere for the periods 1950–2014, 1981–2014, and 2015–2099 in the historical and SSP5‐8.5 simulations, thermal‐based indicators estimate spring advances of −0.7 ± 0.2, −1.4 ± 0.4, and −2.4 ± 0.7 days/decade, while LAI‐based indicators estimate −0.4 ± 0.3, −0.1 ± 0.3, and −1±1.1 days/decade. Thereby, LAI‐based indicators exhibit weaker trends toward earlier onset, leading to uncertainties from different indices being as large or larger than model uncertainty. Reconciling these discrepancies is critical for understanding future changes in spring onset. 
    more » « less
  5. Abstract Macrosystem‐scale research is supported by many ecological networks of people, infrastructure, and data. However, no network is sufficient to address all macrosystems ecology research questions, and there is much to be gained by conducting research and sharing resources across multiple networks. Unfortunately, conducting macrosystem research across networks is challenging due to the diversity of expertise and skills required, as well as issues related to data discoverability, veracity, and interoperability. The ecological and environmental science community could substantially benefit from networking existing networks to leverage past research investments and spur new collaborations. Here, we describe the need for a “network of networks” (NoN) approach to macrosystems ecological research and articulate both the challenges and potential benefits associated with such an effort. We describe the challenges brought by rapid increases in the volume, velocity, and variety of “big data” ecology and highlight how a NoN could build on the successes and creativity within component networks, while also recognizing and improving upon past failures. We argue that a NoN approach requires careful planning to ensure that it is accessible and inclusive, incorporates multimodal communications and ways to interact, supports the creation, testing, and promulgation of community standards, and ensures individuals and groups receive appropriate credit for their contributions. Additionally, a NoN must recognize important trade‐offs in network architecture, including how the degree of centralization of people, infrastructure, and data influence network scalability and creativity. If implemented carefully and thoughtfully, a NoN has the potential to substantially advance our understanding of ecological processes, characteristics, and trajectories across broad spatial and temporal scales in an efficient, inclusive, and equitable manner. 
    more » « less
  6. Abstract It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building. 
    more » « less